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Abstract—A hybrid adaptive algorithm is developed for an
active noise control system that leverages the stability of the
filtered-input normalized least mean squares (FxNLMS) adaptive
algorithm, with the high convergence speed of the filtered-input
recursive least squares (FxRLS) adaptive algorithm. This algo-
rithm is motivated by practical issues in implementing a real-time
active noise control system. It leads to fast initial convergence with
low, stable steady-state error while being limited by the compu-
tational capability of hardware. It gives better convergence speed
than either the FxNLMS or FxRLS algorithm individually, lower
residual error, and a lower overall computational complexity than
the FxRLS algorithm, when appropriate filter lengths are chosen.
Experimental results are presented for the implementation of the
hybrid algorithm to cancel functional magnetic resonance imaging
(fMRI) acoustic noise in an fMRI test-bed.

Index Terms—Acoustic noise control, active noise control (ANC),
adaptive filtering, adaptive signal processing, biomedical applica-
tion, functional magnetic resonance imaging (fMRI).

I. INTRODUCTION

A CTIVE noise control (ANC) has been of interest to re-
searchers for several years now [1]. With the availability

of low-cost high-speed processors, there has been a renewed in-
terest in ANC for a variety of applications including aircrafts
[2], automobiles [3], industrial machine noise [4], as well as
ANC headphones [5].

This brief looks at the application of active noise control to
cancel functional magnetic resonance imaging (fMRI) acoustic
noise. High acoustic noise levels from fMRI machines, besides
being hazardous to the patient, interferes with medical research
like the functional mapping of brain activity [6], [7] which is
the motivation for this research. To evaluate the performance
of active noise control for fMRI acoustic noise application,
fMRI acoustic noise is collected from The University of Texas
Southwestern Medical Center and an fMRI test-bed is designed
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to simulate the fMRI bore. Experimental results from imple-
menting the normalized least mean squares (NLMS) and affine
projection algorithm (APA) using single-tone noise signals are
presented in [8] for this fMRI test-bed. Experimental results
from implementing the filtered-input normalized least mean
squares (FxNLMS), the filtered-input affine projection algo-
rithm (FxAPA), and the filtered-input recursive least squares
(FxRLS) adaptive algorithms for single-tone noise as well as
bandlimited fMRI noise are presented in [9] using the same
fMRI test-bed. These experimental results [8], [9] match the-
oretical results [10] showing that the FxRLS algorithm has a
very high convergence rate which is desirable in this applica-
tion. However, due to the computational limits of commonly
used inexpensive hardware, only a short filter length can be
implemented using the FxRLS algorithm on the hardware
which is insufficient to model the entire system. To implement
a practical system, we are then left with a tradeoff between
choosing an algorithm having a high convergence speed like
the FxRLS algorithm with a suboptimal filter length, and hence,
a larger residual error, or using the FxNLMS algorithm with
slower convergence speed but an optimal filter length, and
hence, a lower residual error when it converges.

This tradeoff motivated the development of the hybrid algo-
rithm presented in this brief. The contributions of this brief focus
toward developing an algorithm with faster convergence rate for
active noise control application while being limited by the com-
putational speed of real hardware which is necessary for the
fMRI application and most practical applications. This brief ig-
nores the fact that fMRI test-bed designed is only an approxima-
tion to the real system and modifications to the test-bed may be
necessary to fully account for all the practical issues in a fMRI
room. The hybrid algorithm allows the user to run the compu-
tationally expensive and sometimes unstable FxRLS algorithm
with a filter size that is limited only by the performance of the
hardware. Once quick convergence has been obtained, based on
our detection scheme, the algorithm switches to the lower com-
putation FxNLMS algorithm, but, with a larger filter size. This
algorithm has immense application in industry for a variety of
applications where engineers are often faced with a tradeoff be-
tween convergence rate and computational complexity on avail-
able cost-effective hardware platforms.

In recent years, there have been other researchers who have
also considered combining the properties of the NLMS and
RLS algorithm, but by using different methods from our hybrid
FxRLS-FxNLMS algorithm. Cascaded RLS-LMS algorithms
are used for lossless audio compression where the RLS algo-
rithm is used as a preprocessor to the LMS stage [11]–[13].
A similar cascaded approach is used in [14], [15] for an array
beam forming application. However, cascaded structures are
not feasible for ANC since desired signal cannot directly be
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Fig. 1. Filtered input ANC algorithm setup.

accessed in ANC, and hence, intermediate error signals cannot
be introduced between the cascaded stages for this control
application. A parallel RLS-LMS adaptation for estimating fast
fading channels is presented in [16]. However, the improved
convergence speed is obtained with a higher computational cost
which does not address the computational limitations faced
in real-time implementations on cost-effective digital signal
processing (DSP) platforms.

The advantages of the proposed hybrid algorithm in real-time
implementation are as follows.

1) Faster convergence than FxNLMS by itself.
2) Faster tracking capability to changes in the input signals,

primary paths or secondary paths.
3) Lower overall computational complexity than FxRLS,

when appropriate filter lengths are chosen.
4) Better than or equal Sound Pressure Level (SPL) cancella-

tion as compared to FxNLMS or FxRLS by themselves for
the same number of iterations.

5) Ensures stability of the FxRLS algorithm which has the
tendency to become unstable and diverge, even after
showing some convergence.

II. ACTIVE NOISE CONTROL

For ANC application, we need to use filtered-input adaptive
algorithms, i.e., the input to the adaptive algorithm is filtered
by the secondary path estimate to take care of the effects
of the secondary path on the adaptive filter [1].
Fig. 1 shows the block diagram of a filtered-input ANC algo-
rithm. represents the system transfer function for the noise
signal propagation from the source to the canceling point in the
acoustic cavity. represents the system transfer function for
the sensor (microphone), loudspeaker and electrical and acous-
tical transmission. We solve for , such that

(1)

(2)

where is called the primary path and is called the
secondary path. The estimate of the desired signal to be
cancelled is obtained by filtering the measured reference signal,

, by an adaptive linear causal FIR filter whose coefficients

are represented by the column vector . Thus

(3)

where is the vector transpose, is the secondary path
impulse response, is the total filter length, where

(4)

III. HYBRID FXRLS-FXNLMS ALGORITHM

To estimate , we use the proposed hybrid
FxRLS-FxNLMS algorithm which involves switching between
2 algorithms, namely FxRLS and FxNLMS.

A. Detection

A detection scheme is necessary to decide when to switch al-
gorithms. We use different filter lengths for the FxNLMS and
FxRLS algorithms with the FxNLMS filter length being closer
to the optimal filter length. Hence, we assume that the FxRLS
algorithm will leave a large residual error at the canceling point
but converge faster, while the FxNLMS algorithm will con-
verge slowly but leave a lower residual error. As a result, we
use the FxRLS algorithm first until the algorithm converges to
the lowest possible residual error. Once it stops converging, we
switch over to the FxNLMS algorithm with an optimal filter
length, thus, continuing the convergence to the optimal filter co-
efficients at a slower rate. Hence, the decision to choose the al-
gorithm is based upon the rate of change of the sound pressure
level (SPL) measured at the canceling point expressed as

(5)

where is the SPL rate of change detection threshold. By
setting the threshold on the absolute value of the SPL rate of
change, it switches the algorithm back to the FxRLS case for
quick convergence, when the primary or secondary path changes
suddenly. We find empirically. The is computed as
follows:

(6)

where the reference pressure equals 2 (Pascal)
for sound in air and root-mean-square pressure, , at the mi-
crophone is calculated by (7)

mV (7)

where the microphone sensitivity, , for the microphones
we used is 47 mV/Pa. The length is set such that the error
power is based on 500 ms of data which is a standard for the
slow setting in most commercial SPL meters. This error power
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may also be approximated with an appropriate
low pass estimator to reduce the complexity of the detector.

B. Filtered-Input Recursive Least Squares (FxRLS) Algorithm

As mentioned earlier, we use different filter lengths in the
FxNLMS and FxRLS algorithms due to the different compu-
tational complexity of the FxNLMS and FxRLS algorithm. For
the FxRLS algorithm, only the first coefficients are updated

(8)

(9)

The rest of the equations for the FxRLS algorithm are shown
in (10)–(14)

(10)

where initializes the signal correlation matrix in-
verse , is the identity matrix, and is a small constant for
high SNR or a large constant for low SNR

(11)

where the column vector equals the reference signal ,
filtered by the secondary path estimate . represents
present and past samples of the input noise signal at time

(12)

(13)

(14)

where and are dummy variables; and is a forgetting
factor [10].

C. Filtered-Input Normalized Least Mean Squares (FxNLMS)
Algorithm

When we switch to the FxNLMS algorithm from the FxRLS
algorithm, the adaptive filter is zero padded to taps.
Hence, from (8) is used in the FxNLMS adap-
tive filter

(15)

where is the convergence step-size and is a small positive
value that prevents a zero division.

If there is a sudden change in the primary or secondary path
the algorithm switches back to the FxRLS algorithm.

IV. COMPUTATIONAL COMPLEXITY

We now compute a criterion to find the maximum length of
the optimal filter, , given that we know the length of the

suboptimal filter, , used for the FxRLS algorithm. For each
algorithm we have

Complexity of FxNLMS
additions

multiplications
additions

(16)

Complexity of FxRLS
additions

multiplications
additions

(17)

The maximum complexity of the FxNLMS algorithm has to
be equal to or less than that of the FxRLS algorithm. Thus

additions
multiplies

additions

additions
multiplies

additions

Assuming that there are hardware multipliers and adders on
the DSP, it implies a single cycle for each computation. Thus,
we must have

(18)

As long as (18) is met, the overall computational complexity
of applying this hybrid algorithm will be less than that of ap-
plying the FxRLS algorithm. Due to the quadratic nature of (18),
this condition is easily met. The additional freed up computa-
tions may be used to run other low priority applications on the
DSP.

V. EXPERIMENTAL SETUP

In this section, we describe the experimental setup used for
the MATLAB simulations and real-time experiments to compare
FxNLMS, FxRLS and hybrid FxRLS-FxNLMS methods.

A. Noise Data Set

To test the performance of the hybrid algorithm, we use real
fMRI noise collected from a Siemens Trio 3 Tesla whole-body
human MRI system at the The University of Texas Southwestern
Medical Center, as well as bandlimited white noise. The fMRI
data was initially sampled at 64 kHz when collected. We use
the 70 Hz-2 kHz bandwidth of this signal (by down-sampling
the data to 4 kHz) to test the performance of our algorithm in
active noise control. The fMRI acoustic noise and its frequency
response are shown in Fig. 2(f) and (c).

B. Hardware Setup

The hardware used includes a floating-point DSP develop-
ment platform (DSK) from Texas Instruments, TI 6713 DSK,
a simulated fMRI bore test-bed with a manikin placed inside
it, two 52si Belkin speakers, two 4942 BK microphones, and
a CT4200 Crown amplifier. A NI 6733 digital-to-analog con-
verter (DAC) and a NI 4472 analog-to-digital converter (ADC)
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Fig. 2. (a) Primary path frequency response. (b) Secondary path frequency response. (c) fMRI noise frequency response. (d) Primary path impulse response.
(e) Secondary path impulse response. (f) fMRI noise in time domain.

Fig. 3. Block diagram showing the hardware setup of the test-bed used in the
real-time experiments.

are used to automate the noise generation system, system iden-
tification, and the data collection system. The hardware connec-
tions are as shown in Fig. 3.

The bore and the manikin together form the primary path,
, while the reference microphone, DSK, amplifier, and

loudspeaker form the secondary path, , in the ANC model
shown in Fig. 1. The reference microphone is placed behind
the noise loud-speaker and is covered with foam to reduce the
effect of the noise cancelling loudspeaker feedback path on the
reference signal. The dimensions of the room are 4.65 m ( )

2.90 m ( ) 2.74 m ( ).

C. Primary and Secondary Paths

The MATLAB simulations are carried out using estimates of
realistic primary and secondary paths as shown in Fig. 2, mod-
eled from our mock fMRI test-bed as described above. Esti-
mating the models of primary and secondary paths are simple
system identification problems, and hence, we will not go into
the details of identifying them. The models were obtained as
linear causal stable single-input single-output transfer functions

and , respectively. Such approximation models serve
our objectives aimed at comparing the performance of the algo-
rithms under the same conditions. The impulse response of the
primary path and secondary paths are 256 taps at a 4 kHz sam-
pling rate.

VI. SIMULATIONS AND REAL-TIME RESULTS

In this section, we compare the performance of the FxNLMS,
FxRLS and hybrid FxRLS-FxNLMS algorithms in MATLAB

simulation as well as in a real-time implementation.

A. MATLAB Simulations

The , , , and values were varied within the fol-
lowing sets. dB s, ,

, . We
varied within the range [0.001,0.5] to find the optimal value
that gives the best convergence. Over 3000 MATLAB simulations
were conducted with various combinations of these parameters
to verify the validity and repeatability of the proposed method.

Fig. 4 shows the convergence plots in SPL for FxNLMS,
FxRLS, and hybrid FxRLS-FxNLMS algorithms tested on
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Fig. 4. SPL convergence plot for FxNLMS, FxRLS, and hybrid FxRLS-FxNLMS algorithms when � � 4 dB/s, ��� � 128 taps, � � 46 taps, � � �����,
and � � �����. Data used: (a) white noise; (b) fMRI noise; (c) white noise; (d) fMRI noise. Primary path is changed in the middle of the data set for (c) and (d).

TABLE I
SIMULATION AND REAL-TIME RESULTS

MATLAB where 4 dB/s, 128 taps, 46
taps, and . The net attenuation levels
(NAL), i.e., the total amount of noise cancellation in decibels,
is shown in Table I for the simulations as well as the real-time
experiments. The results presented here for the simulations use
the parameters that match those that we found to be practically
implementable in the real-time setup. We chose FxRLS filter
length, , to be 46 taps since it is the maximum filter length that
we could implement using the FxRLS algorithm with the com-
putational limits of the TI 6713 DSK. We chose the FxNLMS
filter length to be 128 taps since it is the more optimal
filter length for the primary and secondary paths used. Also,
the , , and values used in the results presented here were
chosen based upon the best practical values implementable on
the real-time system that were the most stable and showed the
best convergence.

In Fig. 4(a) and (b), we compare the convergence perfor-
mance and NAL of the FxNLMS, FxRLS, and hybrid algorithms
in white noise and fMRI noise to find that our hybrid algorithm
performs better than the FxRLS or FxNLMS algorithm for ei-
ther noise data set.

In Fig. 4(c) and (d), we compare the tracking capability of
the FxNLMS, FxRLS, and hybrid FxRLS-FxNLMS algorithms
in white noise and fMRI noise. We test the tracking capability
by changing the primary path transfer function half way through
the data set by distorting it with white noise. We find that our hy-
brid FxRLS-FxNLMS algorithm is able to track changes in the
system at least as good as the FxRLS algorithm and much better
than the FxNLMS algorithm for either noise data set. Hence,
we see considerably better performance for the hybrid FxRLS-
FxNLMS algorithm as compared to FxRLS and FxNLMS algo-
rithms in all the cases shown in Fig. 4. We also examined the
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effect of changing the primary path at different points during
convergence by distorting the primary path with white noise to
find that the hybrid algorithm showed the same tracking capa-
bility as FxRLS after a sudden change in the primary path.

1) Stability: The FxNLMS algorithm diverges when ì is too
high like and becomes stable when is decreased. The
value of is bounded by the error in the secondary path estimate
[1], [17] as shown in (19)

(19)

where is a constant. Since we do not have access to in
practice, we cannot calculate (19) easily and precisely. Hence,
we use which we found empirically to be the
highest convergence rate to produce stable convergence using
the FxNLMS algorithm in the real-time experiments.

The FxRLS algorithm tends to diverge due to instability of the
estimated correlation matrix inverse once the optimal co-
efficients are found with the suboptimal filter length. We found
this problem especially prominent when we used single tones.
If is smaller, the algorithm diverges faster. It shows greater
stability when is increased but it still eventually diverges for
single tones in our case.

The hybrid FxRLS-FxNLMS algorithm solves the insta-
bility problem of the FxRLS algorithm as long as the selected
threshold is sufficiently large to switch over to the FxNLMS
algorithm before the FxRLS algorithm becomes unstable. This
allows us to choose a smaller for much faster convergence
and tracking of signal changes. If is too small, like 0.5 dB/s,
the algorithm waits until the FxRLS is almost unstable before
it switches over to the FxNLMS algorithm. If is too large,
it does not affect stability, but, it does effect the convergence
speed, as described in the next section.

2) Convergence Speed: The FxNLMS algorithm converges
much slower as compared to FxRLS but continues to converge
to a point with lower residual error than the FxRLS because the
filter length for the FxNLMS algorithm is more optimal. If
is decreased the convergence speed of the FxNLMS algorithm
decreases.

The FxRLS algorithm exhibits faster convergence than the
FxNLMS algorithm. When is decreased, convergence speed
and tracking capability increases, but, stability decreases.

The hybrid FxRLS-FxNLMS algorithm converges with the
FxRLS algorithm as long as the SPL decreases at a rate greater
than . When the convergence stagnates with the FxRLS al-
gorithm, it switches to the FxNLMS algorithm which gradually
continues to converge to the optimal solution. Hence, we see
much better performance with the hybrid algorithm. If is too
small, the algorithm waits until the FxRLS algorithm has al-
most fully converged before switching over to the FxNLMS al-
gorithm. Since, the rate of convergence exponentially decreases
as the adaptive filter gets closer to its optimal solution, if has
a lower threshold, the detector waits too long before switching
to FxNLMS, thus, decreasing the higher convergence speed ad-
vantage of the hybrid algorithm. If is too large, the algo-
rithm switches prematurely to the slower FxNLMS algorithm
before it has taken full advantage of the convergence speed of

the faster FxRLS algorithm, and hence, leading to lower overall
convergence speed. Consequently, selecting an appropriate
for the hybrid algorithm is important. However, while choosing
an optimal may show the best convergence rate, choosing a
less optimal does not necessarily discount the advantages of
the hybrid algorithm. We still get better performance than the
FxNLMS and FxRLS algorithms individually, and improve sta-
bility of the FxRLS algorithm.

B. Real-Time Experimental Results

The FxNLMS, FxRLS, and the hybrid FxRLS-FxNLMS al-
gorithms are implemented on the TI 6713 DSK. The same ban-
dlimited 70 Hz–2 kHz fMRI noise and white noise are tested on
this system with the sampling rate set to 4 kHz. All the param-
eters are similar to those used in the simulations. We are lim-
ited by the processing power of the 6713DSK and other hard-
ware platforms, and hence, we take the FxRLS filter length,
46 taps. Since 128 taps is the more optimal length of the adap-
tive filter with the primary and secondary paths we used, the
length of the FxNLMS algorithm is set to 128 taps. We
set , 4 dB/s, and . The results are
presented in Table I. These results match our simulations and
we see that the hybrid algorithm performs far better than the
FxNLMS or FxRLS algorithm individually.

VII. DISCUSSION AND CONCLUSION

We have shown an algorithm that has immense application
in real-time active noise control implementations. This algo-
rithm was conceived as a solution to the computational limita-
tions posed by hardware in implementing the higher complexity
FxRLS algorithm. This led us to consider our hybrid algorithm
that implements the largest filter length we could process on
the DSP using FxRLS, and after convergence, switching to the
slower FxNLMS, with the more optimal filter length. Our re-
sults show that the hybrid FxRLS-FxNLMS algorithm is more
stable, has much better convergence speed, and shows faster
tracking capability of changes in noise signal than the FxNLMS
or FxRLS algorithms individually. Our real-time implementa-
tion and experiments validate these claims.
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